The natural world has been irreversibly changed by human actions and this has led to long-term trends towards increasing environmental degradation and scarcity of natural resources. Both of these trends are closely interlinked and will pose significant challenges over the next few decades, requiring large-scale, international action to avoid the worst-case scenario.

Human activities have resulted in air pollution, habitat destruction, soil erosion, desertification, ocean acidification and many other changes that are causing significant stress to ecosystems. With a growing global population, demand for fresh water and arable land for agriculture are expected to increase in the future. The development of new technologies (such as smart farming) will be essential to overcome some of these challenges. However, many such technologies, including clean energy technologies, require critical minerals that are also in short supply. Substantial efforts in terms of both mitigation (reduction of carbon emissions) and adaptation (changing behaviours, consumption patterns, resource management and more) will be required to maintain a level of ecosystem services needed for human wellbeing.

Environment trends

Natural resource scarcity

As the effects of climate change continue to impact the globe, precious, natural resources like fresh water, arable land and minerals are expected to become increasingly scarce, with significant implications for agriculture and food security, as well as the production of many new innovative technologies. According to the US National Intelligence Council, “nearly all of the Earth’s systems are undergoing natural and human-induced stresses outpacing national and international environmental protection efforts.”[1] The World Economic Forum identifies human over-exploitation and/or mismanagement as key drivers of the scarcity of natural resources.[2] Resource scarcity, whether of water, land or minerals, may also be a driver of conflict, particularly where economic and political issues create barriers to access to natural resources.[3​,4]​​​​​

Water, land, and consequences for food production

Water is already scarce and is likely to become even more scarce in future. Only 3% of the world’s water is freshwater, and much of this is is not readily accessible due to factors that include remote location, political boundaries, economics, and purity. The UN Food and Agricultural Organization (FAO) estimates that 1.8 billion people worldwide will face water scarcity by 2025 and 5.2 billion are expected to face water stress. By 2050, the FAO estimates that only 60% of the water needed will be available.[5] climate change may promote glacier melting that could lead to increased flows of water, higher temperatures are also expected to increase water loss due to evaporation.[4] An increasing demand for water will make the extraction and production (e.g. through desalination) of fresh water more energy intensive, and is likely to drive up costs for access to water.[3] Industrial water pollution, inadequate water management, and non-compliance with water sharing agreements and treaty provisions may lead to tensions over access to water sources.[1]

The same forces that are expected to impact water scarcity (climate change, population growth, ‘Urbanization’, economic development, and poor management) will also impact the availability of arable land for farming. This is a serious challenge when projections estimate that average levels of food production will have to increase by around 50% by 2050 (from a 2012 baseline) to meet the needs of the world’s population.[4] Indeed, it is impossible to separate out the issues of water and land scarcity as each affects the other in a significant way. For example, around 70% of global water consumption goes to agriculture, agriculture will be responsible for a large part of the increased demand for water in future[6], and current intensive farming techniques are linked to water pollution, along with air pollution, soil degradation and pest resistance.[4] Water scarcity and other consequences of climate change, such as volatile weather events and sea-level rise, will, on the one hand, reduce the amount of land available for developing new agricultural areas and, on the other hand, lead to reduced agricultural production. The resulting food insecurity is predicted to have a disproportionate effect on developing countries, with some predicting that “Africa could face a near double-digit reduction in crop yields and production volumes over the next decade, as well as rising food prices by similar margins.”[7]

Technology will need to play a major role in overcoming natural resource scarcity and improving agricultural productivity.[4] ‘Smart farming’ and techniques such as hydroponics and vertical farming will be key. Smart farming involves the use of digital technologies – e.g. unmanned machinery, robots, sensors, drones, big data, and advanced analytics – to be able to analyse the individual needs of specific fields, crops, or animals.[8] This kind of precision agriculture is more environmentally benign, minimizes water and electricity use, while maximizing the productivity of the land. Hydroponics (growing plants in mineral solutions instead of soil) and vertical farming (growing crops in vertically stacked layers) both reduce the need for land to grow certain crops and make it more practical to farm them in urban environments.[4]

Critical minerals and consequences for emerging technologies and the energy transition

Scarcity issues also apply to lesser-known natural resources like critical minerals – rare metals such as lithium, tellurium and rare earth metals that are used for batteries, solar panels, and various electronic devices. Demand for these product types will only increase in the coming decades as more people join the middle class and purchase consumer electronics such as smartphones. In addition, as the global community steps up efforts to cut GHG emissions, and transition to cleaner sources of energy such as electric vehicles (which require a lot of lithium) and solar power, this will increase the demand for these rare metals. As this demand grows, pressure on these limited resources will be significant. With the bulk of known critical mineral deposits in a small number of countries, political and supply chain issues could cause significant challenges in the future.[9]

Scarcity of water, land or minerals will provide both challenges and opportunities for businesses, who may have less readily available resources for production, but who may see potential market opportunities develop for sustainable and eco-friendly production.[10]

 

 

News stories

SDG 13
Climate Action
Take urgent action to combat climate change and its impacts
There are few issues on which all countries can agree, but almost every UN state has committed to the Paris Agreement on climate change.
Smart farming expert Angela Schuster reveals some of the ways that digitalization is transforming agriculture and helping feed the planet.
ISO has put together a group of world experts to apply smart tech to the challenges of sustainably feeding a growing planet.
How does an organization value the dependencies it has on the environment? There’s a lot of information on what makes smarter sustainable strategies, but very little data. Now a new ISO standard provides …
By 2030, water scarcity will have displaced between 24 and 700 million people, according to UN Water, the United Nations coordinating body on water issues. World Water Day is focusing on Sustainable Development …
Why do we need to manage global water resources? According to environmental scientist Dr Debbie Chapman, our health and well-being depend on it – and the payback is tremendous. Here, Dr Chapman explains …
As the technology continues to evolve, the number of users of, and uses for, drones has risen to new heights. The need for an International Standard is clear, but what’s the link with farming?
Wastewater irrigation is an economical and high-in-nutrients option for even the poorest farmers. But, if untreated, the consequences for our health and the environment can be catastrophic. Discover the …
Technical Committee
ISO/TC 207
Environmental management
  • Published 62 Standards | Developing 15 Projects
  • ISO 14001:2015
    Environmental management systems
    Requirements with guidance for use
  • ISO 14046:2014
    Environmental management
    Water footprint
    Principles, requirements and guidelines
Technical Committee
ISO/TC 23
Tractors and machinery for agriculture and forestry
  • Published 394 Standards | Developing 70 Projects
  • ISO 17989-1:2015
    Tractors and machinery for agriculture and forestry
    Sustainability
    Part 1: Principles
Technical Committee
ISO/TC 224
Drinking water, wastewater and stormwater systems and services
  • Published 22 Standards | Developing 16 Projects
  • ISO 46001:2019
    Water efficiency management systems
    Requirements with guidance for use
Technical Committee
ISO/TC 282
Water reuse
  • Published 32 Standards | Developing 11 Projects
  • ISO 22519:2019
    Purified water and water for injection pretreatment and production systems
Technical Committee
ISO/TC 287
Sustainable processes for wood and wood-based products
  • Published 1 Standards | Developing 5 Projects
Technical Committee
ISO/TC 298
Rare earth
  • Published 7 Standards | Developing 9 Projects
  • ISO 22450:2020
    Recycling of rare earth elements
    Requirements for providing information on industrial waste and end-of-life products
  • ISO/TS 22451:2021
    Recycling of rare earth elements
    Methods for the measurement of rare earth elements in industrial waste and end-of-life products
  • ISO 22453:2021
    Exchange of information on rare earth elements in industrial wastes and end-of-life cycled products
  • ISO 23664:2021
    Traceability of rare earths in the supply chain from mine to separated products
Technical Committee
ISO/TC 323
Circular economy
  • Developing 6 Projects
  • ISO/WD 59040 [Under development]
    Circular Economy
    Product Circularity Data Sheet
Technical Committee
ISO/TC 331
Biodiversity
  • Developing 4 Projects
Technical Committee
ISO/TC 333
Lithium
  • Developing 12 Projects
  • ISO/AWI 9287 [Under development]
    LITHIUM SUSTAINABILITY ACROSS THE VALUE CHAIN: CONCENTRATION, EXTRACTION, SEPARATION, CONVERSION, RECYCLING, & REUSE
Technical Committee
ISO/TMBG
Technical Management Board - groups
  • Published 78 Standards | Developing 10 Projects
  • ISO/TMBG/SAG_CRMI ISO Strategic Advisry Group on Critical minerals
  • ISO/TMBG/SAG SF Smart Farming

Threatened ecosystems

Ecosystems worldwide are at increasing risk of long-term changes and damage. Changes to plant life-cycles and animal behaviour are observed in both land and marine ecosystems.[11] Threats from pollution, habitat destruction, deforestation, over-exploitation, changes in biodiversity, seabed mining and ocean acidification are all interfering with the natural functioning of the earth’s ecosystems[3,11] alongside the ongoing threat of global warming.[4]

Reducing emissions of CO2 and other GHGs is a critical response to these threats, and, if ambitious emission-reduction targets are achieved, offers some hope for the world’s ecosystems.[4]

Air pollution continues to increase, especially in rapidly growing cities, and will pose significant health risks into the future.[11] By 2035, air pollution may be the top cause of environmentally-related deaths worldwide.[1] Air quality is predicted to become ‘the most significant indicator with regards to quality of life, happiness and other indices.’[3] As growing numbers of people live in urban areas, air pollution can be expected to increase and will especially impact on urban populations.[3] Already, more than 80% of people living in cities are exposed to air pollution that exceeds safe limits.[1]

Signs of hope in relation to air pollution may appear in the form of increased public awareness, cleaner transport options, retrofitted buildings, and improved urban design.[3]

Soil erosion and desertification will increasingly threaten agricultural and habitable land[11], particularly where deforestation and unsustainable farming practices continue.

News stories

SDG 13
Climate Action
Take urgent action to combat climate change and its impacts
ISO is harmonizing the world’s many metrics, indicators and standards for biodiversity, to give life on Earth a boost.  
Game-changing standards in the race against climate change.
Healthy forests for a healthy planet.
A new expert committee on biodiversity just formed.
A new ISO guide will help ensure climate change issues are addressed in every new standard.
Getting back to basics on Desertification and Drought Day, the UNCCD challenges us to rethink how we use the land.
There is nothing more precious to life than the air we breathe. This year’s World Environment Day theme is air pollution and ISO has a range of international standards that help to combat it.
Our consumption of the earth’s natural reserves has doubled in the last 30 years and a third of the planet’s land is now severely degraded. There is an urgent need to find solutions for land management …
Technical Committee
ISO/TC 207
Environmental management
  • Published 62 Standards | Developing 15 Projects
  • ISO 14055-1:2017
    Environmental management
    Guidelines for establishing good practices for combatting land degradation and desertification
    Part 1: Good practices framework
  • ISO/TR 14055-2:2022
    Environmental management
    Guidelines for establishing good practices for combatting land degradation and desertification
    Part 2: Regional case studies
Technical Committee
ISO/TC 82/SC 7
Mine closure and reclamation management
  • Published 3 Standards | Developing 3 Projects
Technical Committee
ISO/TC 190
Soil quality
  • Published 193 Standards | Developing 24 Projects
  • ISO 15175:2018
    Soil quality
    Characterization of contaminated soil related to groundwater protection
  • ISO 19204:2017
    Soil quality
    Procedure for site-specific ecological risk assessment of soil contamination (soil quality TRIAD approach)
Technical Committee
ISO/TC 234
Fisheries and aquaculture
  • Published 11 Standards | Developing 1 Projects
  • ISO 5020:2022
    Waste reduction and treatment on fishing vessels
  • ISO 22948:2020
    Carbon footprint for seafood
    Product category rules (CFP–PCR) for finfish
Technical Committee
ISO/TC 265
Carbon dioxide capture, transportation, and geological storage
  • Published 12 Standards | Developing 7 Projects
  • ISO 27919-1:2018
    Carbon dioxide capture
    Part 1: Performance evaluation methods for post-combustion CO2 capture integrated with a power plant
  • ISO 27919-2:2021
    Carbon dioxide capture
    Part 2: Evaluation procedure to assure and maintain stable performance of post-combustion CO 2 capture plant integrated with a power plant
  • ISO/TR 27923:2022
    Carbon dioxide capture, transportation and geological storage
    Injection operations, infrastructure and monitoring
Technical Committee
ISO/TC 287
Sustainable processes for wood and wood-based products
  • Published 1 Standards | Developing 5 Projects
Technical Committee
ISO/TC 331
Biodiversity
  • Developing 4 Projects
Technical Committee
ISO/TMBG
Technical Management Board - groups
  • Published 78 Standards | Developing 10 Projects
  • ISO/TMBG/CCCC Climate Change Cordination Committee
  • ISO Guide 82:2019
    Guidelines for addressing sustainability in standards
  • ISO Guide 84:2020
    Guidelines for addressing climate change in standards

References

  1. Global trends. Paradox of progress (US National Intelligence Council, 2017)
  2. The global risks report 2021 (World Economic Forum, 2021)
  3. Future outlook. 100 Global trends for 2050 (UAE Ministry of Cabinet Affairs and the Future, 2017)
  4. Global strategic trends. The future starts today (UK Ministry of Defence, 2018)
  5. Beyond the noise. The megatrends of tomorrow's world (Deloitte, 2017)
  6. Global trends and the future of Latin America. Why and how Latin America should think about the future (Inter-American Development Bank, Inter-American Dialogue, 2016)
  7. Foresight Africa. Top priorities for the continent 2020-2030 (Brookings Institution, 2020)
  8. Future technology for prosperity. Horizon scanning by Europe's technology leaders (EU Commission, 2019)
  9. Critical minerals scarcity could threaten renewable energy future (Stanford University, 2018)
  10. Global trends 2020. Understanding complexity (Ipsos, 2020)
  11. Asia pacific megatrends 2040 (Commonwealth Scientific and Industrial Research Organisation, 2019)